Unit 7 Reading Assignment

Learning Objectives in this Unit:

- Describe the difference between ionic and covalent bonding and differentiate between ionic and covalent compounds.
- Use the concept of electronegativity to predict bond covalency, bond polarity, and the dipole moment of molecules.
- Draw Lewis symbols, structures, and resonance structures. Use formal charge to rank likely Lewis structures.
- Use VSEPR to determine atomic orbital hybridization, predict electron pair and molecular geometry for molecules and ions.
- Describe sigma (σ) and pi (π) bonding in hybrid and molecular orbitals. Understand the differences between valence bond and molecular orbital theory.

Read more about this topic: Chapter 7, Section 8.1

1.	Fill in the blank with "high" or "low"; "lose" or "gain"; "cations" or "anions"
	Metals have relatively [] ionization potentials and [] electrons easily to form
	[].
	Nonmetals have relatively [] electron affinities and [] electrons easily to form
	[].

- 2. Which of the following is NOT true of the covalent compounds?
 - a. Lower melting and boiling points
 - b. Softer in their solid states
 - c. Formed by atoms with similar tendencies to attract electrons
 - d. Good conductors of electricity
- **3.** Match the type of bond to the approximate difference in electronegativity. (Remember these are only guidelines!)

Ionic	0.4 to 0.8
Polar Covalent	>1.8
Pure Covalent	<0.4

- **4.** Use <u>Figure 7.6</u> to indicate which atom in each polar covalent bond would have the partial negative charge and which would have the partial positive charge: H—F; F—C; S—O; O—N
- **5.** Fill in the blanks

How many electrons are shared in each type of bond?
Single bond [] electrons
Double bond [] electrons
Triple bond [] electrons

Unit 7 Reading Assignment

6.	Orde	er the steps for drawing a Lewis structure using the octet rule		
	1	Place all remaining electrons on the central atom		
	2	Draw a skeleton structure of the molecule and connect with single bonds		
	3	Determine the total number of valence electrons		
	4	Form double or triple bonds as needed		
	5	Place all remaining electrons on the central atom		
7.	Fill i	n the blanks		
, •		nents in the [] and higher periods can have an expanded valence shell because		
		have empty [] orbitals in the same shell.		
8.	Whi	ch of the following is NOT true of formal charge?		
	a	. A structure which minimizes formal charge is preferred		
	t	 Formal charge is the hypothetical charge an atom would have if electrons were evenly distributed 		
	C	. Formal charge is the charge on an atom in the molecule		
	C	1. The formal charge on all atoms in a structure must sum to the total charge on the molecule or ion		
9.	Fill i	n the blanks		
		VSEPR module assumes that [] pairs in the valence shell of a central atom will age to [] repulsion by [] distance.		
10.	Fill i	n the blanks with either "side to side" or "end to end"		
	A sigma (σ) bond forms via $[__]$ orbital overlap along the internuclear axis			
	A pi	(π) bond forms via [] orbital overlap on opposite sides of the internuclear axis		